Self-Organizing Maps with Asymmetric Neighborhood Function
نویسندگان
چکیده
The self-organizing map (SOM) is an unsupervised learning method as well as a type of nonlinear principal component analysis that forms a topologically ordered mapping from the high-dimensional data space to a low-dimensional representation space. It has recently found wide applications in such areas as visualization, classification, and mining of various data. However, when the data sets to be processed are very large, a copious amount of time is often required to train the map, which seems to restrict the range of putative applications. One of the major culprits for this slow ordering time is that a kind of topological defect (e.g., a kink in one dimension or a twist in two dimensions) gets created in the map during training. Once such a defect appears in the map during training, the ordered map cannot be obtained until the defect is eliminated, for which the number of iterations required is typically several times larger than in the absence of the defect. In order to overcome this weakness, we propose that an asymmetric neighborhood function be used for the SOM algorithm. Compared with the commonly used symmetric neighborhood function, we found that an asymmetric neighborhood function accelerates the ordering process of the SOM algorithm, though this asymmetry tends to distort the generated ordered map. We demonstrate that the distortion of the map can be suppressed by improving the asymmetric neighborhood function SOM algorithm. The number of learning steps required for perfect ordering in the case of the one-dimensional SOM is numerically shown to be reduced from O(N(3)) to O(N(2)) with an asymmetric neighborhood function, even when the improved algorithm is used to get the final map without distortion.
منابع مشابه
Asymmetric neighborhood functions accelerate ordering process of self-organizing maps.
A self-organizing map (SOM) algorithm can generate a topographic map from a high-dimensional stimulus space to a low-dimensional array of units. Because a topographic map preserves neighborhood relationships between the stimuli, the SOM can be applied to certain types of information processing such as data visualization. During the learning process, however, topological defects frequently emerg...
متن کاملThe Time Adaptive Self Organizing Map for Distribution Estimation
The feature map represented by the set of weight vectors of the basic SOM (Self-Organizing Map) provides a good approximation to the input space from which the sample vectors come. But the timedecreasing learning rate and neighborhood function of the basic SOM algorithm reduce its capability to adapt weights for a varied environment. In dealing with non-stationary input distributions and changi...
متن کامل3D SOM Neighborhood Algorithm
Neighborhood algorithm is an important part of 3D SOM algorithm. We proposed three kinds of neighborhood shape and two kinds of neighborhood decay function for threedimensional self-organizing feature maps (3D SOM) algorithm and applied them to three-dimensional image compression coding. Experimental results show that the 3D orthogonal cross neighborhood shape and exponential function algorithm...
متن کاملAuto-SOM: Recursive Parameter Estimation for Guidance of Self-Organizing Feature Maps
An important technique for exploratory data analysis is to form a mapping from the high-dimensional data space to a low-dimensional representation space such that neighborhoods are preserved. A popular method for achieving this is Kohonen's self-organizing map (SOM) algorithm. However, in its original form, this requires the user to choose the values of several parameters heuristically to achie...
متن کاملSelf-Organizing Feature Maps with Self-Organizing Neighborhood Widths
Self-organizing feature maps with self-determined local neighborhood widths are applied to construct principal manifolds of data distributions. This task exempli es the problem of the learning of learning parameters in neural networks. The proposed algorithm is based upon analytical results on phase transitions in self-organizing feature maps available for idealized situations. By illustrative ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2007